पिछले वर्ष के हाई मार्क्स वाले गणित के सवाल
नई दिल्ली: केंद्रीय माध्यमिक शिक्षा बोर्ड (CBSE) की बोर्ड परीक्षाएं 2024 फरवरी से शुरू हैं, जो अप्रैल तक चलेंगी. सीबीएसई कक्षा 10वीं और कक्षा 12वीं दोनों की परीक्षाएं 15 फरवरी से शुरू हैं. एक दिन बीच करके दोनों कक्षाओं की परीक्षाएं चल रही हैं. सीबीएसई कक्षा 12वीं मैथमेटिक्स का पेपर 9 मार्च को लिया जाएगा. सीबीएसई बोर्ड वर्ष 2019 के प्रश्न पत्र सीबीएसई की आधिकारिक वेबसाइट पर उपलब्ध हैं. ऐसे में 12वीं मैथ का पेपर देने वाले छात्र सीबीएसई बोर्ड की आधिकारिक वेबसाइट पर जाकर पिछले साल के प्रश्न पत्रों से पेपर का पैटर्न समझ और इसकी प्रैक्टिस कर सकते हैं. यहां हम आपको पिछले वर्ष के पेपर से उच्च अंक वाले प्रश्न के बारे में बता रहे हैं. नीचे देखें-
पिछले साल के हाई मार्क्स वाले मैथ के सवाल
1) A tap is connected to such a tank whose conical part is full of water. Water is dripping out from a tap at the bottom at the uniform rate of 2 cm3/s. The semi-vertical angle of the conical tank is 45 .
On the basis of given information, answer the following questions :
(i) Find the volume of water in the tank in terms of its radius r.
(ii) Find rate of change of radius at an instant when r = 2 2 cm.
(iii) (a) Find the rate at which the wet surface of the conical tank is decreasing at an instant when radius r = 2 2 cm.
OR
(iii) (b) Find the rate of change of height ‘h’ at an instant when slant height is 4 cm.
2) A relation R is defined on a set of real numbers as R = {(x, y) : x . y is an irrational number}. Check whether R is reflexive, symmetric and transitive or not.
3) Solve the following system of equations by matrix method :
x + 2y + 3z = 6
2x y + z = 2
3x + 2y 2z = 3
4) Find the vector and the Cartesian equations of a line passing through the point (1, 2, 4) and parallel to the line joining the points A(3, 3, 5) and B(1, 0, 11). Hence, find the distance between the two lines.
OR
(b) Find the equations of the line passing through the points A(1, 2, 3) and B(3, 5, 9). Hence, find the coordinates of the points on this line which are at a distance of 14 units from point B.
Post a comment
5) Find the area of the region bounded by the curves x2 = y, y = x + 2 and x-axis, using integration.